GaAs MMIC Reliability – High Temperature Behavior

  • GaAs MMIC Reliability: High Temperature Behavior

GaAs MMIC Reliability – High Temperature Behavior

Starting at: $65.00

The gallium arsenide monolithic microwave integrated circuit (MMIC) is a developing circuit technology which plays a key role in both military and commercial microwave systems. Due to the required high power dissipation, the microwave monolithic technology must operate in temperatures in excess of 150°C and often above 200°C. The purpose of this book is to (1) address the issues affecting the reliability and the manufacture of GaAs MMICs and (2) present the industrial status (through an industrial database) in addressing such issues as yield, throughput, design rules, chip architecture, reliability, design for yield and manufacturability, substrate qualification, choice of processing technology and current status of process related models and sensitivity analysis. The analysis and discussion of reliability problems for optical interconnects is also presented.

LIMITED QUANTITIES OF HARDCOPY WHILE SUPPLIES LAST

Clear

SKU: PUB-GAAS Category:

Product Description

The gallium arsenide monolithic microwave integrated circuit (MMIC) is a developing circuit technology which plays a key role in both military and commercial microwave systems. Due to the required high power dissipation, the microwave monolithic technology must operate in temperatures in excess of 150°C and often above 200°C. The purpose of this book is to (1) address the issues affecting the reliability and the manufacture of GaAs MMICs and (2) present the industrial status (through an industrial database) in addressing such issues as yield, throughput, design rules, chip architecture, reliability, design for yield and manufacturability, substrate qualification, choice of processing technology and current status of process related models and sensitivity analysis. The analysis and discussion of reliability problems for optical interconnects is also presented.

Additional information

Format

Hardcopy, Download

Table of Contents

1 Introduction to the High Temperature Reliability Issues of MMICs        1
  1.1 Background      1
  1.2 State-Of-The-Art of MMIC High Temperature Behavior      3
  1.3 Chapter Outline      5
References        9
2 MMICs and Monte Carlo Technique        13
  2.1 Monolithic Microwave Integrated Circuits for High Temperatures      13
    2.1.1 MMIC Status    13
    2.1.2 MMIC Performance    14
    2.1.3 MMIC Applications    15
  2.2 Monte Carlo Techniques for Design and High Temperature Prediction      16
    2.2.1 Introduction To Monte Carlo Methods    16
    2.2.2 High Temperature Reliability Simulations by Monte Carlo Techniques    18
References        21
3 MMIC High Temperature Reliability        25
  3.1 Introduction      25
  3.2 Mmic High Temperature Reliability Mathematics      27
  3.3 Investigations of MMIC Reliability      33
  3.4 Concerns of High Temperature MMIC Reliability      35
References        39
4 High Temperature Modeling and Thermal Characteristics of GaAs MESFETs        43
  4.1 Introduction      43
  4.2 State-Of-The-Art for Modeling High Temperature Characteristics      45
  4.3 Chapter Outline and Objectives      46
  4.4 Physical Properties of MESFETs at Elevated Temperatures      46
    4.4.1 Gallium Arsenide    47
    4.4.2 Energy Gaps and Intrinsic Carrier Densities    47
  4.5 Carrier Mobilities and Saturation Velocity      51
  4.6 Modeling of MESFETs      56
    4.6.1 Introduction    56
    4.6.2 Principles of MESFET Operation    57
    4.6.3 Linear Region of MESFET Characteristics    58
    5.6.4 Saturation Region Model   59
  4.7 Empirical MESFET Model     60
  4.8 Temperature Related Properties of GaAs Mesfet      64
References       69
5 Computer Simulation and Electrical Measurements of The GaAs MESFET
Temperature Dependence      
71
  5.1 Introduction to the Simulation of Temperature Dependence     71
  5.2 Simulation Results for the MESFET      73
    5.2.1 Comparison of MESFET Simulation: Hyperbolic and
Quadratic Model   
73
    5.2.2 Simulation Results of the ZTC Bias Point Of GaAs MESFET    82
    5.2.3 Temperature Dependent Characteristics of The GaAs MESFET    94
    5.2.4 Electrical Measurement at Elevated Temperatures   103
  5.3 Thermal Measurements of GaAs Devices Using IR Microscopy
Techniques    
107
    5.3.1 Operation Principle of The IR Microscope   107
    5.3.2 IR Microscopy Measurement Results    108
  5.4 Finite Element Analysis of Heat Transfer in The GaAs MESFET     110
    5.4.1 General Mathematical Assumptions and Model    111
    5.4.2 Simulation Results and Comparison with Measurements   111
  5.5 Summary and Conclusions      114
6 Temperature Effects of MMIC Heterostructure GaAs Transistors
and Circuits      
119
  6.1 Introduction      119
  6.2 Physical Properties of AlGaAs/GaAs HFET      120
    6.2.1 AlGaAs/GaAs HFET Device Structures   120
    6.2.2 Principles of HFET Operation    121
    6.2.3 Modulation Doping   122
  6.3 Aim-Spice HFET Model     123
    6.3.1 HFET Model for Aim-Spice Input File    124
    6.3.2 Current-Voltage Model Used by Aim-Spice    124
  6.4 Current-Voltage Characteristics of AlGaAs/GaAs HFET      128
    6.4.1 Intrinsic Current-Voltage Characteristics    128
    6.4.2 Extrinsic Current-Voltage Characteristics    129
  6.5 Temperature Dependent Characteristics of HFET     133
    6.5.1 Energy Gap and Intrinsic Carrier Concentration    133
    6.5.3 Saturation Velocity and Electron Mobility   138
    6.5.4 Temperature Dependence of Current – Voltage Characteristics    143
References        147
7 High Temperature Behavior of The GaAs MMIC HFET Inverter       149
  7.1 Introduction      149
  7.2 Inverter Circuits     149
    7.2.1 Basic Inverter   149
    7.2.2 Direct-Coupled FET Logic (DCFL) Inverter   150
    7.2.3 Buffered FET Logic (BFL) Inverter    152
  7.3 Failure Mechanisms of AlGaAs/GaAs HFET at Elevated Temperatures     153
    7.3.1 Interdiffusion    153
  7.4 Kink Effect     158
  7.5 Ohmic Contact Resistance Increase     159
  7.6 Thermal Runaway Effect      160
  7.7 Gate Degradation      160
  7.8 Conclusions     163
References        165
8 Design Optimization Of GaAs MMIC High Temperature Electronic
Packaging      
167
  8.1 Introduction      167
  8.2 Design Constraints Imposed by Temperatures      168
    8.2.1 Die Information    168
    8.2.2 Mounting Platform Technology Information    169
  8.3 High Temperature Packaging Design Goals     169
    8.3.1 Performance   169
    8.3.2 Reliability    170
  8.4 Applying The High Temperature Design Guidelines     170
    8.4.1 Die To Lead Interconnect    172
    8.4.2 Lead    173
    8.4.3 Case    173
    8.4.4 Die and Substrate Attach    174
    8.4.5 Lead Seals   175
    8.4.6 Lid and Lid Seal    175
  8.5 High Temperature Electronic Package      176
References        182
9 MMIC High Temperature Testing Methodology and Analysis        185
  9.1 Introduction to Arrhenius Model     185
  9.2 Accelerated Life Tests      189
    9.2.1 Introduction    189
References        193
10 MMIC Circuit High Temperature Analysis        195
  10.1 MMIC Circuit Modeling for High Temperature Design      195
    10.1.1 Introduction    195
    10.1.2 Operation Principles of MESFET   196
    10.1.3 Theoretical I-V Characteristics of GaAs MESFET    200
    10.1.4 GaAs MESFET Spice3 Model [17-20]   203
  10.2 MMIC Spice Circuit Analysis      209
    10.2.1 Spice Analysis For MMICs    209
      10.2.1.1 Transimpedance Amplifier (TIA) 210
      10.2.1.2 Eg-6101 Low-Noise Amplifier 212
  10.3 The Methodology to Determine the Correlation Matrix of MMICs     213
    10.3.1 Introduction to Correlation Mathematics   213
    10.3.2 Statistical Model for the Correlation Between MMIC Devices   215
    10.3.3 The Methodology to Estimate the Correlation Of MMICs   216
References        221
11 Monte Carlo High Temperature Reliability Model for MMICs       225
  11.1 Introduction      225
  11.2 The Methodology to Estimate MMIC High Temperature Performance     225
    11.2.1 The Joint Probability Method via Monte Carlo Simulation   225
    11.2.2 The Non-Markovian Method via Monte Carlo Simulation    227
    11.2.3 The MMIC Monte Carlo Technique   228
  11.3 MMIC Circuit Reliability Model      228
    11.3.1 The Given Conditions for MMIC Reliability Model   228
    11.3.2 Procedures to Model MMIC Reliability    231
    11.3.3 Validation of MMIC High Temperature Model    238
      11.3.3.1 Eg-6101 LNA and TIA High Temperature Analysis 238
      11.3.3.2 Eg-6010 LNA and Eg-6203 Power Amplifier Reliability
Analysis
241
      11.3.3.3 Simulation Results 241
References        245
Index        247

You may also be interested in…