Reliability of Compound Semiconductor Analogue Integrated Circuits

  • Reliability of Compound Semiconductor Analogue Integrated Circuits

Reliability of Compound Semiconductor Analogue Integrated Circuits

$75.00

Material scientists, device technologists, and microwave designers must focus on the reliability concerns of the products which are being developed from compound semiconductor structures. The book focuses on a physics of failure approach to the understanding of MMIC reliability, covering basic failure modes for each of the device building blocks, up to packaged MMIC modules. This book will allow the GaAs technologist, designer and graduate student to become familiar with the issues related to product reliability and to develop the reliability prediction tools which ensure that reliability and performance margins are designed into each product.

*NOTE: Available as a PDF Download File Only

SKU: PUB-RCSAIC Category:

Product Description

Material scientists, device technologists, and microwave designers must focus on the reliability concerns of the products which are being developed from compound semiconductor structures. The book focuses on a physics of failure approach to the understanding of MMIC reliability, covering basic failure modes for each of the device building blocks, up to packaged MMIC modules. This book will allow the GaAs technologist, designer and graduate student to become familiar with the issues related to product reliability and to develop the reliability prediction tools which ensure that reliability and performance margins are designed into each product.

Table of Contents

1 Reliability and Performance Concerns of GaAs Microwave Monolithic
Integrated Circuits       
1
  1.1 MMIC State-of-The-Art      1
  1.2 Review of Circuit Performance     2
    1.2.1 MESFET integrated front-ends   2
    1.2.2 Heterojunction field effect transistors (HFETs) and MMICs    3
    1.2.3 HBT analogue-to-digital converters (ADCs)    4
    1.2.4 HBT power amplifiers    5
  1.3 Background and Introduction to Reliability of MMICs     6
  1.4 MMIC Reliability Statistical Distributions     9
    1.4.1 Failure mechanism and analysis   9
    1.4.2 Comparison with photodiode circuit data    19
  1.5 High Electron Mobility Transistor Circuits: Typical Physics of Failure
Analysis     
20
    1.5.1 The dual channel HEMT MMICs    21
    1.5.2 Reliability analysis of HEMT circuits    22
    1.5.3 HEMT monolithic Integrated circuits reliability   25
    1.5.4 Elevated temperature degradation of HEMT ICs    28
  1.6 Reliability Study of High Power MMICs     30
  1.7 Conclusions and Summary     35
  1.8 References      37
2 General Reliability Considerations as Applied to Microwave Monolithic
Integrated Circuits       
43
  2.1 Introduction     43
  2.2 Reliability Concepts      43
  2.3 Design for Reliability      45
    2.3.1 System architecture and device specification    46
    2.3.2 Stress analysis   46
    2.3.3 Derating    46
    2.3.4 Stress screening   47
    2.3.5 Failure modes, effects and criticality analysis (FMECA)   47
    2.3.6 Failure data collection and analysis    47
  2.4 Practical Aspects of MMIC Reliability      48
    2.4.1 Avalanche breakdown    48
    2.4.2 Electrostatic discharge breakdown    49
    2.4.3 Time dependent gate metal breakdown (TDGMB)    49
    2.4.4 Second breakdown in bipolar transistors    50
    2.4.5 Ionic contamination    50
    2.4.6 Surface charge spreading   51
    2.4.7 Hot electrons   51
    2.4.8 Electromigration    51
    2.4.9 Hillock formation   52
    2.4.10 Contact spiking    52
    2.4.11 Metallization migration   52
    2.4.12 Corrosion of metallization and bond pads   53
    2.4.13 Stress corrosion in packages    53
    2.4.14 Die fracture   54
    2.4.15 Die and substrate adhesion fatigue   54
  2.5 Testing Concerns in MMICS      55
    2.5.1 High temperature operating life   55
    2.5.2 Temperature cycle    56
    2.5.3 Thermal shock   56
    2.5.4 Temperature humidity bias (THB)    56
    2.5.5 Autoclave    57
    2.5.6 Pressure-temperature-humidity-blas (PTHB)    57
    2.5.7 Stress cycling tests   57
    2.5.8 Low temperature operating life   58
    2.5.9 Mechanical shock   58
    2.5.10 Variable frequency vibration   58
    2.5.11 Constant acceleration    58
    2.5.12 Solder heat   58
    2.5.13 Lead and stripeline integrity   59
    2.5.14 RF module burn-in    59
    2.5.15 Variable frequency vibration   59
  2.6 References      61
3 Monolithic Microwave Integrated Circuit Reliability Testing and Analysis        63
  3.1 Introduction     63
  3.2 Accelerated Life Tests     63
    3.2.1 Life test flow    65
    3.2.2 RF life test equipment   66
  3.3 Life Tests and Step Stress Tests      67
    3.3.1 Constant stress tests   69
    3.3.2 Constant time stress test   71
    3.3.3 Test data    72
  3.4 MMIC Reliability Model      73
  3.5 MMIC Reliability Prediction Statistics, Software and Regression
Analysis     
76
    3.5.1 Introduction to MMIC statistics   76
    3.5.2 Basis for probability plots    77
  3.6 Conclusions      81
  3.7 References      83
4 The Role of Finite Element Analysis in CAD For MMIC Reliability
Investigations      
85
  4.1 Introduction     85
  4.2 Development of The Finite Element Formulation     86
  4.3 Application of Finite Element Methods to MMIC Components     91
    4.3.1 Steady-state temperature distribution in a HDI MMIC package
  
95
    4.3.3 Electric field distribution in a HDI MMIC package   100
  4.4 Summary and Conclusions     102
  4.5 References      103
5 Reliability Issues of Discrete FETs and HEMTs       105
  5.1 Introduction     105
  5.2 Critical Issues for Accelerated Testing     107
    5.2.1 Accelerated tests   107
    5.2.2 Electrical characterization methods   110
    5.2.3 Thermal characterization methods    111
  5.3 Failure Modes and Mechanisms of GaAs MESFETs     117
    5.3.1 Gate and channel degradation   118
    5.3.2 Ohmic contact degradation   135
    5.3.3 Effects of surface states    145
    5.3.4 Humidity effects    149
    5.3.5 Burn-out   153
  5.4 Failure Modes and Mechanisms of HEMTs      156
    5.4.1 AIGaAs/GaAs HEMTs   157
    5.4.2 Pseudomorphic AIGaAs/lnGaAs/GaAs HEMTs   170
    5.4.3 InP-based HEMTs    171
  5.5 Reliability Results     172
    5.5.2 Field results    176
  5.6 Conclusions      177
  5.7 Acknowledgements     178
  5.8 References      181
6 Surface-Induced Electromigration In GaAs Devices       195
  6.1 Fundamentals      195
    6.1.1 Introduction   195
    6.1.2 Basic physical phenomena   195
    6.1.3 Technological surfaces   197
    6.1.4 Wet etching processes   201
    6.1.5 Influence of surface quality on metallization structure   203
  6.2 Electromigration Influence by Real Technology Surfaces      205
    6.2.1 GaAs (100) surface after chemical treatment   205
    6.2.2 Electromigration on real technology surfaces   212
  6.3 Field Induced Electromigration     217
    6.3.1 XPS analysis    221
    6.3.2 Relation between surface treatment and threshold voltage    222
    6.3.4 Influence of the operational conditions to lateral material
movement  
232
  6.4 Electromigration Associated with ESD      233
    6.4.1 ESD sensitivity of ohmic contacts   233
    6.4.2 ESD sensitivity of Schottky contacts (gate structures)    237
    6.4.3 Protection circuits against ESD and transients for microwave
devices   
241
  6.5 Discussion of Practical Commercial Examples     247
    6.5.1 Introduction   247
    6.5.2 Gradual degradation of output power    248
    6.5.3 MESFETs developed for digital integrated circuits    257
    6.5.4 Conclusions   262
  6.6 References      263
7 MMIC Electromigration Methodology       273
  7.1 Introduction to Electromigration Phenomena     273
    7.1.1 Electromigration In metallization systems    273
    7.1.2 Introduction to the physical models    276
    7.1.3 Electromigration In microwave monolithic Integrated circuits   279
  7.2 Testing Methodology of Electromigration and Results      285
    7.2.1 Resistometric method    286
    7.2.2 Low-frequency noise measurements    290
    7.2.3 Drift velocity measurement   295
    7.2.4 MTTF Measurement    297
    7.2.5 Correlation between the MTTF and resistance Increase    301
    7.2.6 SWEAT, a ramping stress techniques   302
  7.3 Computer Simulation of Electromigration      303
    7.3.1 Film construction for Monte Carlo simulation    304
    7.3.2 Randomization of grain boundary structures   305
    7.3.3 Implementation of the physical models   305
    7.3.4 Typical results    306
  7.4 Summary     307
  7.6 References      309
8 GaAs Substrate Mechanical Reliability       317
  8.1 Introduction     317
  8.2 Mechanical Failures of Device Substrate      318
  8.3 Thermal-Mechanical Stresses in GaAs Substrates     320
  8.4 Failure Mechanisms and Damage Models of GaAs Substrate      329
    8.4.1 Brittle fracture    330
    8.4.2 Fatigue crack Initiation and propagation   335
  8.5 Mechanical Properties of GaAs Wafers      337
    8.5.1 Modulus of elasticity   338
    8.5.2 Modulus of rupture   341
    8.5.3 Fracture toughness    343
    8.5.4 Coefficient of thermal expansion   346
  8.6 Reliability Design of GaAs Substrate and Package     348
    8.6.1 Approach for mechanical reliability design    349
    8.6.2 Design variables and constraints    350
    8.6.3 Design process    351
  8.7 Summary     361
  8.8 Acknowledgments      362
  8.9 References      363
9 MMIC Thermal Analysis       367
  9.1 Introduction     367
  9.2 Fundamentals of Heat Transfer     368
    9.2.1 Heat conduction    368
    9.2.2 Heat convection   370
  9.3 Thermal Resistance     372
  9.4 Aspects of Numerical Simulations      374
  9.5 Description of The MMIC Circuit for Numerical Analysis     378
  9.6 Two-Dimensional MMIC Model for Numerical Simulation      380
    9.6.1 Two-dimensional results and discussions    381
    9.6.2 Effect of power variation   382
    9.6.3 Effect of the ambient temperature    383
  9.7 Three-Dimensional MMIC Model for Numerical Simulation     384
    9.7.1 Temperature distributions    384
    9.7.2 Eutectic effects    387
    9.7.3 Heat sink effects    387
    9.7.4 Overall thermal resistance    388
  9.8 Conclusions      389
  9.9 References      391
10 Thermally Stable Gate Metallizations for GaAs       393
  10.1 Introduction     393
  10.2 Refractory Metal Systems      394
    10.2.1 Pt/GaAs and Pd/GaAs    394
    10.2.2 Ti/GaAs   394
    10.2.3 Ta/GaAs    394
    10.2.4 Mo/GaAs   395
    10.2.5 W/GaAs   396
    10.2.6 Ti-W/GaAs   396
  10.3 Refractory Metal Silicides and Nitrides      396
    10.3.1 WSix/GaAs    398
    10.3.2 TiWSix/GaAs    401
    10.3.3 TaSi2/GaAs    402
    10.3.4 VSix/GaAs    406
    10.3.5 WNx/GaAs    406
  10.4 Device Fabrication      406
  10.5 Tungsten Nitride and (TiW)-Nitride MESFETs      408
  10.6 Conclusions      409
11 Reliability Considerations for MMIC Packages        415
  11.1 Introduction     415
    11.1.1 Design constraints Imposed by high frequencies    415
    11.1.2 MMIC packaging design goals    417
  11.2 Applying the MMIC Reliability Design Guidelines      418
    11.2.2 Leads    421
    11.2.3 Case    421
    11.2.4 Die and substrate attach   423
    11.2.5 Lead seals   423
    11.2.6 Lid and lid seal    424
  11.3 MMIC Package Reliability Considerations      424
    11.3.1 Semi-custom packages for high reliability   425
  11.4 MMIC Power Amplifier Reliable Packaging     426
    11.4.1 Thermal management   427
    11.4.2 Electrical performance    430
  11.5 References      439
12 MMIC Radiation Effects       441
  12.1 Introduction     441
  12.2 Types of Radiation Effects     441
  12.3 Transient Radiation Effects     443
  12.4 GaAs MMIC Radiation Effects     451
  12.5 Single Event Effects     453
  12.6 Neutron Radiation Effects     455
  12.7 Summary     457
  12.8 References      459
Index        461

You may also be interested in…